Navigation path

EDGAR

EDGAR - What's new

15-09-2017
Global Emissions EDGAR v4.3.2: part I: the three main greenhouse gases CO2, CH4 and N2O.

In EDGARv4.3.2 emissions are calculated for greenhouse gases and air pollutants per sector and country in support of atmospheric scientists and policy makers.

For the energy related sectors the activity data are mainly based on the energy balance statistics of IEA (2014) (Internet: http://www.oecd-ilibrary.org/energy/co2-emissions-from-fuel-combustion-2014_co2_fuel-2014-en), whereas the activity data for the agricultural sectors originate mainly from FAO (2014) (Internet: http://faostat3.fao.org/faostat-gateway/go/to/download/Q/*/E).

For full documentation we refer to: Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Dentener, F., Bergamaschi, P., Pagliari, V., Olivier, J. G. J., Peters, J. A. H. W., van Aardenne, J. A., Monni, S., Doering, U., and Petrescu, A. M. R.: EDGAR v4.3.2 Global Atlas of the three major Greenhouse Gas Emissions for the period 1970–2012, Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2017-79, in review, 2017.


Go to dataset ]

26-06-2017
The EDGAR v4.3.2_VOC_SPEC global speciated NMVOC emissions dataset.

Non-methane volatile organic compounds (NMVOC) include a large number of chemical species differing for their chemical composition and properties. The disaggregation of total NMVOC emissions into species is thus required to better model ozone and secondary organic aerosols formation. Region- and sector-specific NMVOC speciation profiles are here developed and applied to the EDGARv4.3.2 database covering the years 1970-2012, with the same sector resolution as the total NMVOC. The complete documentation on the speciation profiles and on the methodology used can be found in Huang et al. (2017).

Reference: Huang, G., Brook, R., Crippa, M., Janssens-Maenhout, G., Schieberle, C., Dore, C., Guizzardi, D., Muntean, M., Schaaf, E., and Friedrich, R.: Speciation of anthropogenic emissions of non-methane volatile organic compounds: a global gridded data set for 1970–2012, Atmos. Chem. Phys., 17, 7683-7701, https://doi.org/10.5194/acp-17-7683-2017, 2017.


Go to dataset ]

06-12-2016
Trends in Global CO2 Emissions.
by J.G.J. Olivier, G. Janssens-Maenhout, M. Muntean,. J.H.A.W. Peters, November 2016


2015, the year of the landmark Paris Agreement was remarkable. Not only was 2015 the hottest year since records began in 1880, but top emitter China started to curb carbon dioxide (CO2) emissions. As a result, global CO2 emissions from fossil fuel combustion and cement production and other processes decreased in 2015 by 0.1% compared to 2014. China (with 29% share in global total) and the United States (with 14% share) gave an example by effectively reducing their CO2 emissions by 0.7% and 2.6%, respectively, in 2015 compared to 2014. Also emissions in the Russian Federation (5% share) and Japan (3.5% share) decreased by 3.4% and 2.2%, respectively. However, the European Union (EU-28) (10% share) and India (7% share) report increases of 1.3% and 5.1%, respectively. Taking into account the uncertainty in the trend we conclude that in 2015 global CO2 emissions for these sources have stalled. Since global population growth is 1.2% per year, stalling of global emissions means per definition a 1.2% decrease in global per capita CO2 emissions from 5.0 ton CO2/cap in 2014 to 4.9 ton CO2/cap in 2015. On a global scale, the slowdown in emissions since 2012 has lasted for four years now and also reflects structural changes in the global economy, such as improvements in energy efficiency and in the energy mix in major emitting countries, as anticipated in previous CO2 reports of Olivier et al. (2015, 2014). However, further mitigation of fossil-fuel use is called for to achieve the large absolute decreases in global greenhouse gas emissions that are necessary to meet the Paris Agreement's goal to keep global warming to well below 2degC. The reductions needed to meet this target are still achievable through further deployment of mitigation measures, provided that the deployment is implemented both at large scale and fast. The Clean Energy Package, proposed by the European Commission on 30th November 2016 is a good example in this direction.

More info can be found in the CO2 report 2016.
Timeseries can be downloaded from CO2 time series 1990-2015 per region/country and CO2 time series 1990-2015 per capita for world countries and CO2 emissions per GDP for each country 1990-2015.
CO2 emissions from fossil-fuel use and cement production in the top 5 emitting countries and the EU

14-11-2016
The Covenant of Mayors: GHG Emissions Achievements and Projections
by A. Kona, G. Melica, A. Iancu, B. Koffi, P. Zancanella, S. Rivas Calvete, P. Bertoldi, G. Janssens-Maenhout, F. Monforti-Ferrario, November 2016
presented at the Energy for cities event at COP22 by P. Bertoldi (European Commission, JRC)


This JRC report assesses the success of the 8-yr old Covenant of Mayors initiative. After the adoption of the EU Climate and Energy Package (updated under COM/2015/080), the European Commission launched in 2008 the Covenant of Mayors initiative as a way to endorse and support the efforts deployed by local authorities in the implementation of sustainable energy policies. The Energy DG of the European Commission extended end last year the mandate to cover not only mitigation but also adaptation and the time horizon to 2030 (in line with EU’s 2030 climate and energy package) and renamed the initiative as the Covenant of Mayors for Climate and Energy. In September 2016 already 213 million citizens are covered by a city that adhered to the initiative, which proves the successful outreach to local authorities at various levels (from municipalities to regions and provinces), nonprofit organizations and networks. The minimum mitigation target of 20% greenhouse gases emission reduction by 2020 was, in September 2016, already overcommitted with 7% point by 5910 signatories (representing 204.01 million citizens) that set an overall reduction target of 27%.

More info can be found in the report
Also the 1 Gigaton Coalition lists CoM as one of the success stories in their report "Renewable energy and energy efficiency in developing countries: contributions to reducing global emissions", released on 3 November 2016. Followup is foreseen with a methodological workshop at COP22 on 17th November.

08-11-2016
Towards a European Operational Observing System to Monitor Fossil CO2 emissions, by P. Ciais, D. Crisp, H.A.C. Denier van der Gon, R. Engelen, M. Heimann, G. Janssens-Maenhout, P. Rayner, M. Scholze, reviewed by P. Bergamaschi, M. Dowell, G. Broquet, F. Chevallier, B. Pinty, H. Zunker, October 2015
presented at the EarthInfo event of UNFCCC at COP22 by B. Pinty (European Commission, JRC - DG GROW)


This European Commission (EC, DG GROW - JRC) report spells out the ingredients for a European CO2 Space programme under the Copernicus framework. It provides the roadmap for a European integrated observation system dedicated to the monitoring of fossil CO2 emissions using independent atmospheric observations. The CO2 monitoring system comprises: (1) atmospheric CO2 measurements obtained from dedicated space-borne sensors, complemented by in-situ networks, which together allow for the separation of fossil CO2 emissions from natural fluxes, (2) the operational provision of bottom-up fossil CO2 emission maps, at high spatial and temporal resolution, and near-real-time updates, (3) an operational data-assimilation system, which will integrate atmospheric measurements with bottom-up information into consistent and accurate estimates of fossil CO2 emissions and their trends. In followup of the identified current and future scientific and technical capacities, the EC (DG GROW/ Copernicus) established CO2 Monitoring Task Forces, with ESA (Earth Observation Programme) to advise on the pre-operational implementation of a space component and with JRC to set-up a specific European verification system with an operational data infrastructure for monitoring anthropogenic CO2 emissions. The ultimate goal for the EC is to enable an observation system to monitor global anthropogenic GHG emissions with operational and internationally coordinated capabilities likely to be available in the 2030s.

More info can be found in the presentation of 08-11-2016 or in the CO2 monitoring report of 23-10-2015

FIRST PREV ( Page 1 of 5 ) NEXT LAST